Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement.

Gaush Meditech Ltd 高视医疗科技有限公司

(Incorporated in the Cayman Islands with limited liability)
(Stock Code: 2407)

VOLUNTARY ANNOUNCEMENT OPHTHALMIC ELECTROPHYSIOLOGICAL DIAGNOSTIC SYSTEM OBTAINED MEDICAL DEVICE REGISTRATION CERTIFICATE IN CHINA

This announcement is made by Gaush Meditech Ltd (the "Company", together with its subsidiaries, the "Group") on a voluntary basis, to inform the shareholders and potential investors of the Company regarding the latest business development of the Group.

The board (the "Board") of directors (the "Director(s)") of the Company is pleased to announce that Gaush Tech Ltd.* (深圳高視科技有限公司) ("Gaush Tech"), a subsidiary of the Company, has recently obtained the medical device registration certificate for its "ophthalmic electrophysiological diagnostic system" from the Guangdong Provincial Medical Products Administration.

Gaush Tech's recently approved ophthalmic electrophysiological diagnostic system (Registration Certificate No.: Yue Xie Zhu Zhun 20252161439) integrates three core functionalities: Visual Evoked Potential (VEP), Electroretinography (ERG) and Electrooculography (EOG). Of which, VEP is primarily used for electrophysiological assessment of the optic nerve, providing a direct evaluation of the entire visual pathway from retinal ganglion cells to the visual cortex. For patients unable to cooperate with subjective visual acuity testing, VEP serves as an objective tool for monitoring brain function. In neurosurgery, VEP enables real-time monitoring of the optic nerve, chiasm and tract, particularly during sellar region procedures (e.g., pituitary adenoma or craniopharyngioma), offering early warning of potential intraoperative visual impairment. ERG mainly assesses retinal function, including photoreceptors and bipolar cells, and is instrumental in screening for retinal disorders. EOG evaluates the function of the retinal pigment epithelium and photoreceptors, aiding in the differential diagnosis of conditions such as retinitis pigmentosa.

The ophthalmic electrophysiological diagnostic system has become a regular method in ophthalmic examinations, providing a methodology for the examination and diagnosis of fundus diseases, and also serving as an objective tool for diagnosing retinal functions and optic nerve diseases, which enables precise, early-stage localization and diagnosis of ophthalmic diseases by capturing specific electrophysiological signals generated by the human visual system in response to targeted optical stimuli. It is applicable to the detection of disorders affecting the visual pathway, optic nerve and retina. This diagnostic modality measures bioelectrical changes during visual processing, offering multifaceted insights into the functional status of the visual system at various levels. Characterized by its non-invasive nature, objectivity, quantifiability and repeatability, the system plays a pivotal role in the diagnosis and differential diagnosis of eye diseases, prognostic evaluation of treatment outcomes and objective assessment of visual function.

Shareholders and potential investors of the Company are advised to exercise caution when dealing in the shares of the Company.

By order of the Board

Gaush Meditech Ltd

Mr. Gao Tieta

Chairman and Executive Director

Hong Kong, November 10, 2025

As of the date of this announcement, the Board comprises Mr. Gao Tieta as Chairman and executive Director, Mr. Liu Xinwei, Mr. Zhao Xinli, Mr. Zhang Jianjun and Ms. Li Wenqi as executive Directors, Dr. David Guowei Wang as non-executive Director, and Mr. Feng Xin, Mr. Wang Li-Shin and Mr. Chan Fan Shing as independent non-executive Directors.

* For identification purpose only